eli

The Extreme Light Infrastructure – ELI

Unleashing the power of Laser technology for science and society

Lithuanian Research Community Meeting Vilnius April 5th 2024

From Nobel Prize to Extreme Light A Technological Breakthrough Enables ELI

Gérard Mourou and Donna Strickland won the 2018 Nobel Prize for Physics for proposing "Chirped Pulse Amplification" for highpower, ultrafast, extremely intense lasers.

Mourou, et al proposed ELI in 2004, and from 2007-2010 initial reseach including 15 institutions and € 7.9M from the Seventh Framework Programme.

Beyond the (2018) Nobel Prize... A Technological Breakthrough From Lithuania Enables ELI

Optical parametric chirped pulse amplification (**OPCPA**) technology - combining OPA with CPA and add energy from longer-pulse lasers to short-pulses - was **invented** at Vilnius University Laser Research Center by a Lithuanian research group of Prof. Algis Piskarskas and Prof. Audrius Dubietis.

This technology is implemented in the designs of the consortium of two leading Lithuanian companies – EKSPLA and LIGHT CONVERSION. The Single Cycle Laser **SYLOS is a state-of-the-art system**, employing **OPCPA**. This underlying technology is now a standard in leading laser systems.

Prof. Algis Petras Piskarskas

Prof. Piskarskas was a pioneer of laser research to Lithuania, helping it to become a leading country in the world for laser science.

2023 Physics Nobel Prize

Experimental Methods Generating Attosecond Pulses

THE NOBEL PRIZE IN PHYSICS 2023

The world of electrons is explored with the shortest of light pulses When laser light is transmitted through a gas, ultraviolet overtones arise from the atoms in the gas. In the right conditions, these overtones may be in phase. When their cycles coincide, concentrated attosecond pulses are formed. OVERTONES ARE SUPERIMPOSED ·MAMMAMMAM REINFORCE OR CANCEL EACH OTHER ATTOSECOND PULSES Example of an experimental PULSE setup TRAIN COMBINED BEAM OBSERVATION >FILTER DEL A GVS LASER LIGH The laser light is divided into two beams, where one is used to create a train of attosecond pulses. This pulse train is then added to the original laser pulse and the combination is used to perform extremely rapid experiments.

eliDemocratising science using high-performance lasers

Applications in Material Science and Biology – structure and dynamics to attosecs

Particle Acceleration 250 MeV Ions Acceleration by lasers

Radiation Physics and Electron Acceleration Soft to hard x-rays, GeV electrons

Plasma Physics and High Energy Density, Astrophysics, Nuclear Photonics

Ultra High Intensity Interactions High-field physics and theory

Laser Development

Applications in materials science and biology

Electron dynamics in chemical processes and electronic materials

- Movement of **atoms** in chemical reactions down to picoseconds
- Movement of **electrons** in chemical reactions and electronic materials below femtoseconds

Generation of ultra-short pulses with controlled delay

High intensity driving field(red) ionizes gas to create electron-ion pairs that recombine to produce shorter (<fs), higher-energy (blue) radiation – High Harmonic Generation (HHG)

Then introduce controlled time separation between two pulses: pump and probe

Pump-probe studies of chemical and biochemical processes

- Induce changes in the electronic configuration with a stimulating pulse of light the **pump**
- **Probe** the global structural-rearrangement as a function of time delay between pump and probe using IT beam which provides a fingerprint of the vibrational spectrum and though that insights into the structure

Target Fast ions fs laser fs bunch of electrons Laser Electron cloud Gas jet

eli Laser-Plasma Electron Acceleration

RF Cavity

1 m => 100 MeV Gain

Electric field < 100 MV/m

Electric field > 100 GV/m

Intense laser pulse ionizes gas, and the separated electrons are dragged in its wake producing a highenergy electron beam - LPA or LPWA – which in turn can produce brilliant X-rays

Laser-Plasma Electron Acceleration

SLAC linear accelerator – 3km long

electron energy: 50 GeV

Trailer approx. 15 m long carrying LWFA

Similar energy electron beam ?

Synchrotrons

A high-energy electron beam emits brilliant radiation if it describes an oscillating path – between alternating magnetic poles in an 'undulator' or 'wiggler' in a synchrotron

Betatrons

A high-energy electron beam emits brilliant radiation if it describes an oscillating path – between alternating magnetic poles in an 'indulator' or 'wiggler' in a synchrotron or in the oscillating electromagnetic field of a high-intensity laser

Laser-driven undulator X-ray source

Goal: demonstration of the SASE XUV-FEL regime - We ~ 350 MeV - saturation in a single undulator (~ 3 m) - 'seeded' FEL

High-repetition rate operation using the L2-DUHA laser/ELI-Beamlines 10 Hz → 25Hz → 50 Hz

*LUIS -*Biomolecular imaging with fs, coherent XUV pulses

L2-DUHA Laser

- 3J / 25fs (> **100TW**) @**50Hz**
- Pump laser uses diode-pumped
 Yb:YAG slabs (cryogenic cooling)
- OPCPA short-pulse chain (ultrahigh ps-contrast)
- Auxiliary MID-IR (2.2 μm) beam
 @ 1kHz (~5 mJ)

Radiotherapy with very high energy electron beams

High energy electrons (250 MeV) penetrate more deeply than X-rays (6 MeV), and can be focused to deposit their energy to a greater extent in the target area (e.g. tumour) compared to surrounding tissue

Courtesy of V. Malka

```
T. Fuchs et al. Phys. Med. Biol. 54, 3315-3328 (2009), in coll. with DKFZ
Y. Glinec et al. Med. Phys. 33, 1, 155-162 (2006),
O. Lundh et al., Medical Physics 39, 6 (2012)
```

Laser-Plasma Ion Acceleration

Laser pulse hits a thin foil and drives formation of sheath of electrons which in turn accelerates ions out of film: energy gain ~100MeV in ~ μ m

Target Normal Sheath Acceleration

Laser driven ions for radiotherapy

Radiotherapy for cancers using particles containing protons and neutrons (which are forms of hadrons): Such hadron therapy mainly uses protons – heavier carbon ions would be even better - more targeted Dose (%)

Laser-based sources readily tuned to optimum dosing energy (Bragg peak), would probably be much cheaper and short pulse observed to be much more effective (Flash Effect – not understood!)

eli

• High energy ions (H isotopes) from the target (TNSA - the pitcher) are used to drive light ion nuclear reactions (fusion) in a suitable converter material e.g. deuterated solid or liquid (the catcher) to produce high brightness fast neutrons

Driving nuclear processes

eria Conte⁶, Giacomo Cuttone⁴, Angelica Facoetti pe Magro⁵, Daniele Ma

- Proton beam can also drive fusion of ¹¹B nuclei to produce high- energy alpha particles (α).
- These alpha particles have a higher relative biological effectiveness compared to protons, making them more effective at killing cancer cells –around a ¹¹B-containing drug targeting a tumour

eli

Laser-induced nuclear fusion

Fusion fuel can be a combination of H isotopes D and T that are compressed to very high densities and taken to high energy state (temperature) to overcome Coulomb barrier, leading to fusion of nuclei with release of energy

- 1. Surface of fusion target heated very rapidly to make a plasma envelope.
- 2. Fuel compressed by rocket-like blowoff of the hot surface material.
- 3. At the end of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000 °C.
- 4. Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.

ELI will NOT have the energy required to drive this process but it will enable critical studies of the plasma physics needed to produce engineering solutions

Physics in ultra-high EM fields

Plasma Physics and High Energy Density, Astrophysics, Nuclear Photonics Ultra High Intensity Interactions High-field physics and theory

eli

Matter (and antimatter) under extreme EM fields

Plasma physics

 High energy density physics, inertial confinement fusion, shock physics, development of plasma optics at ultra-high light intensities and energy densities, laboratory astrophysics

Explore vacuum structure

 Strong-field QED and production of matterantimatter pairs from a vaccum, dispersive and absorptive photon propagation processes in ultra-high laser fields - vacuum birefringence and diffraction

eliDemocratising science using high-performance lasers

Applications in Material Science and Biology – structure and dynamics to attosecs

Particle Acceleration 250 MeV Ions Acceleration by lasers

Radiation Physics and Electron Acceleration Soft to hard x-rays, GeV electrons

Plasma Physics and High Energy Density, Astrophysics, Nuclear Photonics

Ultra High Intensity Interactions High-field physics and theory

Laser Development

Extreme Light Infrastructure for Europe

3 distributed branches set up as user facilities using European Structural Funds:

- Attosecond Laser Science, exploring ultra-fast processes with uniquely high time resolution (atto – a billion, billionth of a second) (ELI ALPS, Szeged, HU)
- High-Energy Beamlines Facility, developing and applying very short pulses of ultra-intense radiation to explore extreme conditions or produce high-energy particles and radiation (ELI Beamlines, Prague, CZ)
- Nuclear Physics Facility with ultra-intense lasers and brilliant gamma beams to produce and explore new nuclear states or generate neutron beams (ELI NP, Magurele, RO)

ELI ALPS Szeged, Hungary

124 meret

The second second

ELI ALPS – Ramping up User Access

Call #1 – Summer 2022

ELI ALPS laser systems

Primary laser	MIR	HR-1 (long/short pulse)	SYLOS (3)	HF PW (design)
Description	Mid-IR with OCPCA and CEP stabilisation	High Repetition Rate Yb- fiber laser, diode pumped	NOPCPA driven by diode- pumped Nd:YAG, CEP	OCPCA Ti:Sa , Nd:YAG amplifiers
Central wavelength	3200 nm (optimal)	1030 nm	825 nm	800 nm
Peak power	>2.4 GW	>25/140 GW	>15 TW	0.48 PW (2 PW)
Average power	12 W	up to 100 W	120 W	10 W (300 W)
Pulse energy	>120 µJ	1 mJ	120 mJ	4 J (28.9 J)
Repetition rate	100 kHz	100 kHz	1 kHz	2.5 Hz (10 Hz)
Pulse duration	<50 fs	<40 fs / <7 fs	<8fs	22 fs (<19 fs)

- Gas phase XUV-IR pump-probe @ 100 kHz
- flexible reconfiguration according to user needs
 Highest flux attosecond pump-probe 100 kHz beamline.

51 pJ APT on target (**267 pJ** at generation) Peng Ye *et al., J. Phys. B: At. Mol. Opt. Phys.* **53** 154004 (2020)

Peng Ye et al., Ultrafast Science 2022, 9823783 (2022)

HR GHHG & NanoEsca

For energy, spatially, spin and time resolved studies of ultrafast electron dynamics in condensed matter

Monochromatized XUV pulses with few femtosecond duration

Supports condensed matter end-stations with XUV-IR pump-probe capabilities

Core capabilities, at 100 kHz XUV – IR / 70 MHz fs CEP oscillator:

- Photoemission Electron Microscopy (PEEM) mode:
- laterally resolved microscopy of the sample surface with time resolution
- Imaging Photoelectron Spectroscopy mode:
- lateral (nm), time (fs/asec) and energy resolution (few tens of meV)
- Momentum microscopy:
- imaging of the momentum space, time and energy resolution
- With a state-of-the-art Au/Ir(100) imaging spin filter (spin resolved detection) Spin domains

66 µm

Spin domains on an iron plate

ELI Beamlines Dolní Břežany, Czechia

111

State Longitude States

L1 ALLEGRA 5TW (100mJ/20fs), 1kHz, 800nm 0.5TW (10mJ/20fs), 1kHz , 800nm

L2 DUHA

100TW (21/20fs), 100Hz , 820nm 0.1TW (5mJ/50fs), 1kHz , 2200nm L3 HAPLS 1PW (30J/30fs), 10Hz , 850nm L4 ATON 10PW (1.5kJ/150fs), 0.01Hz , 1055nm 1PW (1.50J/150fs), 0.01Hz , 1055nm 1.5kJ, 0.5-10ns, 0.01Hz , 1w/2w

E1: HHG-MAC, PXS-TREX, trELlps & TCT

E3: P3 E4: ELIMAIA-ELIMED

L1 ALLEGRA 5TW (100mJ/20fs), 1kHz, 800nm 0.5TW (10mJ/20fs), 1kHz , 800nm

L2 DUHA

100TW (2J/20fs), 100Hz , 820nm 0.1TW (5mJ/50fs), 1kHz , 2200nm

L3 HAPLS 1PW (30J/30fs), 10Hz , 850nm L4 ATON

10PW (1.5k)/150Js), 0.01Hz , 1055nm 1PW (150J/150fs), 0.01Hz , 1055nm 1.5kJ, 0.5-10ns, 0.01Hz, 1w/2w

E1: HHG-MAC, PXS-TREX, trELlps & TCT L1: ALFA E2: Gammatron E3: P3

E4: ELIMAIA-ELIMED

L1 ALLEGRA 5TW (100mJ/20fs), 1kHz, 800nm 0.5TW (10mJ/20fs), 1kHz , 800nm

L2 DUHA

100TW (2J/20fs), 100Hz , 820nm 0.1TW (5mJ/50fs), 1kHz , 2200nm

L3 HAPLS 1PW (30J/30fs), 10Hz , 850nm L4 ATON 10PW (1.5kJ/150fs), 0.01Hz , 1055 1PW (150J/150fs), 0.01Hz , 1055m 1.5kJ, 0.5-10ns, 0.01Hz, 1w/2w

E1: HHG-MAC, PXS-TREX, trELlps & TCT L1: ALFA E2: Gammatron E3: P3 E4: ELIMAIA-ELIMED

E5: ELBA, LUIS

Laser systems @ELI BL

including ramp-up/upgrades

Laser parameters	L1 - ALLEGRA	L2-DUHA	L3 - HAPLS	L4 - ATON
Description	OPCPA, Yb:YAG thin disks, diode pumping	OPCPA, Yb:YAG slabs,diode-pumped	CPA, Ti:Sa, diode pumping	CPA/OPCPA, Nd:glass, flash lamps pumping
Energy	55 mJ (100 mJ)	3 J	13 J (30 J)	300 J @2w (1.5 kJ @1w)
Pulse width	15 fs	25 fs	27 fs	2-10 ns (150 fs)
Peak Power	>3 TW (>6 TW)	>100 TW	0.5 PW (1 PW)	NA (10 PW)
Wavelength	840 nm	820 nm (5mJ @2.2 μm)	800 nm	530 nm (1060 nm)
Repetition rate	up to 1 kHz	50 Hz (5mJ @1 kHz)	up to 3.3 Hz (10 Hz)	1/3min (1/min)
Intensity contrast	10-10	10-11	10-11	NA (10 ⁻¹¹)

L4-ATON 10PW/10Hz Laser

high-energy, 10PW laser with <u>long-pulse (ns, kJ)</u> capability

- ✓ Compact 10PW (1.5kJ/150fs) at 1 shot/min
- ✓ Most energetic 10 PW laser ever built
- ✓ Generation of ns kJ pulses with programmable temporal shape by the Long Pulse frontend
- ✓ Narrowband and Broadband options in the Long Pulse (ns) regime (LPI → LIF)
- ✓ L4P (PW, 150J/150fs) aux beam for pumpprobe (HED and LIF research) and pulsed (~ns), directional, fast neutron source (10¹⁰/shot → ~10¹⁹n/s/cm²)

- Mid-IR to Hard X-rays @1kHz
- Pump-Probe techniques for
- fs-ms dynamics

beamlines

• Betatron combined with Inverse Compton Scattering for hard X-Rays

- kJ-class (2w), ns, high rep-rate, pulse-shaping capability
- Platform for HEDP, ICF, shock physics
- Dedicated targetry & diagnostics

- Ultrahigh intensity laser-matter interaction (>10²¹W/cm²)
- Laser-plasma p acc. (>35MeV)
- Tertiary sources (pitcher-catcher)

- ELBA: all-optical laser-electron collider
- LUIS: laser-driven FEL (350MeV; 45 eV photons)

Advanced studies in basic science

- Characterisation of laser-matter interaction with nuclear methods:
 - nuclear astrophysics and nucleosynthesis
 - photonuclear reactions, nuclear structure, exoticnuclei
- particle acceleration with high powerlasers
- quantum electrodynamics (QED)

Developing technologies for:

- medical applications (X-ray imaging, radioisotopes)
- industrial applications (nondestructive studies with!)
- material studies with positrons
- materials in high radiation fields

ELI-NP @ 10 PW

Most powerful laser sytems across the world

eli ELI's technical standing – now and in the future

For ELI: LASER AVERAGE POWER (W)

- Full symbol: goal
- Half full symbol: already achieved
- Other laser facilities denoted by black squares

eli ELI's technical standing – now and in the future

For ELI:

LASER AVERAGE POWER (W)

- Full symbol: goal
- Half full symbol: already achieved

Other laser facilities denoted by black squares

A wide range of science with impact

- Medical therapy and imaging
- fs X-ray science for insights into fundamental chemistry, biochemistry and electronics
- Development of ultra-compact sources of particles and photons
- Fundamental studies of high-energy density systems, LIF, approaching NLQED

Complementary developments needed for data and computation facilities and a range of enabling technology (targetry, detectors and diagnostics...) – bringing together expertise across the 3 Facilities

Ultimately revisit the (2011) White Book

eli

The Extreme Light Infrastructure – ELI

Unleashing the power of Laser technology for science and society

Lithuanian Research Community Meeting Vilnius April 5th 2024

eli

The Extreme Light Infrastructure – ELI

How to access ELI Facilities

Lithuanian Research Community Meeting Vilnius April 5th 2024

- Excellence-Based Access Evaluation of proposals by international peer-review panels. *Results of experiments published and open.*
- **Mission-Based Access** Thematic research granted on the basis of scientific missions pursuing challenges. Proposals reviewed by international panels. *Results published and open.*
- Proprietary Access Paid access for industrial or other users.
 Results are retained by the user, consistent with ELI ERIC's Data and IPR Policy.

The First 3 ELI User Calls Have 227 Proposals from nearly800 scientists from 28 CountriesNetherlands

ELI ERIC User Calls - evolution of science areas

For ELI ERIC - strong increase in *Life Sciences* and *Particle Acceleration Applications* from the 2nd to 3rd Call, as new accelerator facilities come online

Some reduction in **AMO and Chemistry** and **Surface and Materials Science** in 3rd Call due to lower availability of L1 instruments

eli 4th Joint ELI Call for Users

• ELI Facilities:

- ELI ALPS, Szeged, Hungary
- ELI Beamlines, Dolní Břežany, Czech Republic
- 4th Call period: 25 March 29 April 2024
- Unique scientific opportunities provided by access to a wide range of 36 complementary instruments
- Single point of access (<u>https://up.eli-laser.eu</u>)
- Access is free based on a peerreviewed evaluation of scientific excellence
- Contact Integrated ELI User Office user-office@eli-laser.eu

or technical contacts listed on User Portal.

Peer Review Process

- All proposals are assessed internally by the Instrument Responsibles and Safety Experts for feasibility from a technical and safety point of view, indicating resource needed from ELI to enable the experiment to be conducted and how much beamtime is needed
- Proposals are also assessed by an external expert panel to prioritise on the basis of scientific excellence, taking care to avoid conflicts of interest
- Final decision made by ELI Management to ensure sufficient resources are available to support the highest-prioritized proposals

PRP Subpanels and Membership

Subpanel	Chair	Proposals [# reviewers]
SP1: AMO physics and chemistry	Majed Chergui	16 [2]
SP2: Surface and materials science	Philippe Delaporte	27 [2]
SP2: Life sciences	Giannis Zacharakis	12 [2]
SP4 + 5: Plasma physics and relativistic and ultrarelativistic interactions	Toma Toncian	3 [All]
SP6: Particle acceleration and applications	Charlotte Palmer	13 [2]

Dates for 4th and 5th User Calls

- There will be two User Calls every year, and two corresponding PRP meetings and allocation periods
- PRP meetings will be held in January (remote) and June (in person) with the latter tied to the User Meeting and the venue alternating between ELI ALPS and ELI Beamlines (for now !).
- For 2024 User Calls please note dates for your diary.

Subpanel	User Call 4	User Call 5
Launch of User Call	March 25 th	September 25 th
Proposal submission deadline	April 29 th	October 29 th
PRP meeting	June 24-25 th	January 9-10 th (2025)
Notification of outcome to users	July 22 nd	February 3 rd (2025)
Start of scheduled experiments	October 28 th	May 5 th (2025)
End of scheduled experiments	April 30 th (2025)	October 31 st (2025)

8th edition of the Joint ELI Summer School 2023

- 120 participants from 24 countries
- 4 day programme
- 32 speakers
- 38 Poster submissions

ELISS 2024

- 2 6 September 2024
- Szeged, Hungary
- https://indico.eli-laser.eu/e/ELISS2024

eli

The Extreme Light Infrastructure – ELI

How to access ELI Facilities

Lithuanian Research Community Meeting Vilnius April 5th 2024