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Theory predicts that with specifically engineered
semiconductor structures it would be possible to
create an inversionless Bloch laser or in simple
terms a terahertz emitter [1]. It happens to be
that this can be achieved with semiconductor
superlattices which possess, compared to
traditional semiconductor structures, extremely
long lattice periods. Since the high-frequency
gain in superlattices is related to the negative
differential conductivity [1] and does not require
population inversion, the device can operate at
room temperature, though thorough theoretical
work is still needed to fully understand
mechanisms that allow pushing the frequencies
to the THz range. Our interest in the problem was
also stimulated by a recent experimental
demonstration of dissipative parametric
generation, which underlines the importance of
plasma effects in active superlattice devices [2].
We start our analysis with a relatively simple
model of a semiconductor superlattice proposed
by Ktitorov et al. [3]. The solution of the
Boltzmmann equation allows us to analyse the
high-frequency conductivity of the system,
which can show if there are any gain resonances.
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Fig. 1. Real part of high frequency conductivity of the
superlattice. The graphs follow the Esaki-Tsu curve and
predict a region of negative differential conductivity, where a
theoretical Bloch laser could exist [1]. The graphs depict
different conductivity calculation methods: a) Original
Ignatov model b) Simplified Ignatov’s equation when k-0 c¢)
Original Ktitorov’'s model d) Comparison of all three
calculation methods.

A more mathematically challenging approach,
proposed by Ignatov et al, introduces a
Bhatnagar-Gross-Krook (BGK) collision integral,

that results in dependence of the conductivity on
the wavenumber [4]. To our surprise, these two
models are in good correlation. Additionally, the
Ignatov model works in the limiting case (See Fig.
D.

With the knowledge of the conductivity, it is
possible to find the eigenmodes of the plasma
excitations in the system. From the combined
results of these models, we see two main factors
to consider (See Fig. 2). The first one is plasma
frequency w, and the second one is Bloch
frequency Qg . We believe that we have a
combination of these effects interplaying with
each other, thus forming a space-charge wave in
the superlattice structure that predominantly
defines the gain properties of the device.
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Fig. 2. The comparison of the real part of eigenmodes of the
system, acquired from a cubic equation describing the
oscillations in the system. The blue curve is a quadratic
solution to a simplified cubic equation. The orange curve is
an analytic solution to the full cubic equation. Both curves
follow of what appears to be an interplay between two

mechanisms: Bloch (g and plasma w, oscillations.
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