Structure

Back

Department of Molecular Compound Physics

Head of department prof., habil. dr. Vidmantas Gulbinas
phone +370 5 261 9656
 
The investigations carried out in the Department of Molecular Compounds Physics are focused on photoinduced electronic processes and their characteristics in various organic, inorganic, hybrid and also biological systems. The examples are organic and perovskite solar cells and other devices, photosynthetic protein complexes, fluorescent sensors. Our goals are to understand both sequence of the photoinduced processes and the effect the structure of the systems has on these processes. Additionally, we strive to control processes in new organic optoelectronic devices and biological sensors and to create new methods of characterization for organic systems.

We employ a number of different ultrafast spectroscopy methods and combine them with time-resolved electric methods for achieving our goals. Together, these techniques allow us to determine the spectroscopic and electric properties of molecules and materials, which then aid us in creating new molecular devices or by improving existing devices for use in new areas. Unique ultrafast optical techniques are used, results of which are combined with transient absorption, time-resolved fluorescence and time-of-flight methods for studying photogeneration of charge carriers and quickly-evolving rates of carrier drift and diffusion.

Besides optoelectronic devices, another research direction that is being pursued in the Department is the investigation of processes occurring in natural biological systems. The mechanism of initial steps in photosynthesis is investigated by ultrafast spectroscopy techniques such as two-dimensional electronic spectroscopy and time-resolved fluorescence. New theoretical models are being developed for describing excitation and carrier dynamics and the effect protein environment has on them. Structural properties of biological and other molecular objects are being determined using CARS, multiphoton fluorescence and single-molecule fluorescence microscopies. Viscosity and temperature on the microscale are being determined by fluorescent sensors.
 
Laboratories:

Equipment

UV-VIS spectrophotometer JASCO V-670
This spectrometer is equipped with dual-grating, dual-detector design to fully cover the range to 2700 nm.
The V-670 double-beam spectrophotometer utilizes a unique, single monochromator design covering a wavelength range from 190 to 2700 nm (3200 nm option). The monochromator features dual gratings (automatically exchanged): 1200 grooves/mm for the UV/VIS region; 300 grooves/mm for the NIR region. A PMT detector is provided for the UV/VIS region and a Peltier-cooled PbS detector is employed for the NIR region. Both gratings and detector are automatically exchanged within the user selectable 800 to 900 nm range

 
   

Fluorescence lifetime spectrometer Edinburgh Instruments FL920
The FLS920-t is a modular, computer controlled fluorescence lifetime spectrometer. Based on an L – geometry hardware configuration, the FLS920-t utilizes the technique of Time Correlated Single Photon Counting (TCSPC) to measure time resolved luminescence spectra and luminescence lifetimes spanning the range from 100 picoseconds to 10 microseconds, with the accuracy and the resolution that only the technique of TCSPC can offer.

   

Streak camera
Streak camera is a device used to measure ultra-fast fluorescence. Several of the many advantages against other fluorescence measuring systems is that streak camera can register the entire dataset in a very short time and it has very high time resolution – up to 2 ps. The principle of operation of the camera is similar to analog oscilloscope. The main concept of the camera is to bend the trajectory of the electrons with a varying electric field, which increases over time. Thus, the last electrons which arrive at the camera get bent the most. Since only one coordinate of the camera is used for time resolution (electron trajectory deviation), the other coordinate can be used to get spectral information. This allows gathering all the spectra with extremely good time resolution in one sweep. Streak camera is extremely useful if the sample is degrading fast or if we need to measure only the start of fluorescence decay (50-200 ps).
Our system uses 3W 1030nm "Pharos" as the main oscilator and "Hiro" harmonics genereator to produce laser pulses of ~80ps and 1030nm, 515nm, 343nm or 257nm. Frequency of the main oscilator (76MHz) can be reduced to 10kHz using Pockels cell.

 
  

2D spectrometer
The set-up is currently under construction. More info soon.

 

Pump-probe
Pump-probe technique is probably the most widely used variation of ultrafast spectroscopy technique. Its concept is very simple and uses two short laser pulses: an intense pulse, ‘the pump’, which induces a photoreaction in the studied system and a weaker pulse, ‘the probe’, which monitors the corresponding change in the absorption spectrum of the sample. The delay of the probe pulse can be varied with respect to that of the pump and thus, the corresponding absorption change in the samples can be recorded at different time instances after the arrival of the pump pulse. Absorption change dynamics shows various processes that happen during the relaxation of photoexcited molecules.
The spectrometer is based on an amplified femtosecond laser Pharos 10-600-PP (Light Conversion Ltd.) generating 290 fs duration pulses at 1028 nm at a 200 kHz repetition rate. Optical parametric generator Orpheus PO15F2L (Light Conversion Ltd.) is used for tuning the wavelength of the pump pulse. We use a 2 mm thick sapphire or calcium fluoride plate in order to generate a white light continuum for probing differential absorption.

 
   

CARS microscope
CARS microscopy is label free technique which contrast mechanism based on intrinsic molecule vibrations enabling chemical selective imaging. CARS is orders of magnitude more sensitive than spontaneous Raman. Nonlinear nature of CARS signal provides 3D imaging possibility without using confocal microscopy configuration. The Anti-stokes signal is blue-shifted and therefore is free from one-photon fluorescence background.
Our home-made CARS microscope setup includes a dual wavelength laser source and a scanning microscope. The laser consists of a picosecond frequency doubled Nd:YVO4 pump laser with the pulse repetition rate of 1 MHz equipped with a traveling wave optical parametric generator (OPG) which enables probing the 700 – 4500 cm-1 range of vibration frequencies. In our scheme for CARS implementation a signal radiation from the OPG (6 ps) is coupled with fundamental wavelength (1064 nm) and used as Pump and Stokes excitation beams, respectively.

 
   

Single molecule microscope with spectrometer
Our single-molecule fluorescence microscope - spectrometer allows us to acquire signals (intensity over time or fluorescence emission spectrum) of individual fluorescent molecules either immobilised on the surface or freely diffusing in solution. The setup can be operated in two excitation-detection configurations:
By exciting a wide sample field in total internal reflection (TIR) mode and detecting fluorescence signal from a number of individual molecules in parallel. Fluorescence image is split into two spectral components. The temporal resolution is limited, however, to approximately a video rate. The main advantage of this detection mode – the possibility of observation of a large number of molecules in parallel. It also allows us to monitor single-molecule FRET signals [1].
By exciting individual molecules in confocal mode and monitoring fluorescence from separate molecules one at a time. In this mode, it is possible to acquire full fluorescence spectra and achieve better temporal resolution. Temporal resolution for spectral acquisition is a few milliseconds, whereas if opting for the detection of only two spectral components, temporal resolution is up to a few tens of nanoseconds.
Moreover, in the confocal mode, it is possible to collect fluorescence bursts from molecules diffusing freely in solution. This way vast data statistics are collected relatively fast. By analysing such data with correlation analysis, it is possible to determine, for example, the efficiency of the excitation energy transfer inside the molecule of interest.
Recently our setup was upgraded with an alternated laser excitation (ALEX) [2] and a beam rotation in the back focal plane of the objective, which allows us to achieve more even wide field illumination.

References:
1. D. Rutkauskas, M. Petkelytė, P. Naujalis, G. Sasnauskas, G. Tamulaitis, M. Zaremba, V. Šikšnys. Restriction enzyme Ecl18kI-induced DNA looping dynamics by single-molecule FRET.  Journal of Physical Chemistry B 118, (2014), 8575-8582.
2. Kapanidis AN, Lee NK, Laurence T, Doose S, Margeat E, Weiss S. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci. 2004;101: 8936-41.

 
   

Glove Box

This glovebox (Plas-Labs basic glove box) is engineered to fit general laboratory isolation applications. It can be easily modified for specific uses. Unit is very handy for isolating sensitive research studies from a hostile exterior environment. This unit is compact, portable, lightweight and self-contained. Main features:

  • Clear one piece acrylic top,
  • Double layered, closed cellular neoprene gaskets for airtight seal between top and base,
  • Adjustable SS clamps compensate for wear
  • 8 in. O.D. ports with ambidextrous Hypalon® glove with SS O-rings
  • Transparent transfer chamber (12 L × 11 in. I.D.) with adjustable vacuum gauge
  • Four purge valves, two on transfer chamber, two on main chamber

Multiple electrical outlet strip, CE UL and CSA approved

 
   

TEA_MT - Intensity versus time trace of fluorescent spots extraction and analysis software
Author: Marijonas Tutkus

General info

  • The analysis package is written in “Igor Pro” language.
  • This software can only be distributed upon direct request to the author!

  • The software was written so that all of the daily single-molecule data analysis tasks are accessible at one place:
    • fluorescent spot detection,
    • co-localization of the fluorescent spots from 2 channels,
    • intensity versus time traces extraction for selected type of fluorescent spots,
    • filtering of traces
    • normalization of traces to an excitation field
    • intensity change point detection in the traces,
    • characterization of detected states,
    • manual selection of extracted traces,
    • 2D histogram plotting of the analysis results.
  • It can handle most of the single-molecule data formats.
  • The software has internal memory for entered parameters, the size of windows and their positions.
  • Each part of the program gives output as tables of igor binary format. There is an additional function in the main panel to convert them into delimited text format.
  • Software development was under MacOS, therefore, it may happen that Windows users find some small problems.
  • I am making updates of software constantly, therefore, feedback is highly appreciated:
    marijonas.tutkus@ftmc.lt
projects
  • "Stability of perovskite solar cells: identification and control of degradation processes" (Nr. 09.3.3-LMT-K-712-01-0031). 2018-2021Principal investigator - Marius Franckevičius, main implementers: Vidmantas Gulbinas, Renata Karpič, Andrius Devižis, Andrej Dementjev, Egidijus Kamarauskas.
  • “Next generation fluorescent viscosity sensors" (Nr. P-MIP-19-211). 2017-2019. Principal investigator - Aurimas Vyšniauskas.

Completed projects:

  • “Influence of acceptor materials on charge carrier generation and motion in organic solar cells”, Research Council of Lithuania. 2015-2017. Head V. Gulbinas
  • The best performing current state-of- the- art organic solar cells use fullerene-based electron acceptor mate rials. Attempts to use other, cheaper acceptor mate rials are less successful, and still remains not clear why. Recent investigations including our works revealed a relatively high electron mobility in fullerene materials, which is believed to be of the major importance for carrier generation and ,extract ion. Generally, charge carrier mobility and diffusion coefficient are among the most important parameters of electronic materials . In organic materials these parameters are typically much lower than in inorganic semiconductor.s., however strongly time-dependent; initially may be several orders of magnitude higher . In this project we will foe-us on the carrier generation and mobility dynamics in solar cells with acceptor materials based on polymers and small molecules with high electron affinity or semiconductor nanoparticles. The project aims at the development of the conceptional picture how the carrier generation and extract ion is related to the properties of electron accepting materials. We will apply photoelectrical and optical methods with ultrahigh time resolution, as well as advanced theoretical techniques to address the carrier generation mechanism and dynamics. The final task of the project is to formulate the requirements for the electron accepting materials enabling efficient operation of organic solar cells.
  • ,,Metal organic perovskite photodetectors“, National research programme "Towards future technologies". Research Council of Lithuania. 2016-2018. Head R. Augulis
    High efficiency of metoloorganic perovskite solar cells achieved to date suggests that these materials may be successfully applied for light detectors as well. Owing to exceptional properties of perovskites and their fabrication technologies these detectors are expected to reach parameters comparable with those based on inorganic semiconductors and to have some unique properties, such as low price, large area, flexibility, compatibility with state of the art organic electronics circuits. Operation principles of solar cells and detectors are similar by many aspects, but there are several essential differences, which require different materials and device structures. There are several possible different architectures of perovskite-based photo detectors which may enable optimization of different parameters important for various applications .. The aim of this project is to investigate the applicability of CH3NH3PbX3 perovskites for light detectors, evaluation of viability of different device architectures and eventually, creation of a photodetector, which by some parameters could be be comparable or superior to commercially available conventional semiconductor detectors. During this project , we will gain expertise in new technologies of fabrication of metaloorganic perovskites and fabrication of their films, develop new charge transport materials, develop and adapt spectroscopic methods for investigation of perovskites and their devices. Consequently, the project will enable the gain of competence in a very modern and innovative area of new generation optical electronics and creation of infrastructure necessary for its further development.
  • “Analysis of Photophysical Processes of Novel Light-emitting Aromatic Polymers Based on Fast Time-resolved Spectroscopy”, Lithuanian-Japan  science project. Research Council of Lithuania. 2017-2019.
    Head V. Gulbinas
    The project aims at development of photonic materials based on phthalimide compounds and polyimides.. Polyimides, due to their rigid structures and strong intermolecular interactions, are thermally and chemically stable materials with interesting thermal, mechanical, and optical properties. Moreover, their properties may be significantly varied by changing their chemical structures . It makes polyimides very interesting for creation of photonic materials for photovoltaic devices, organic light emitting diodes, functional liquid crystal alignment films, and solar spectrum converter. Luminescence properties of polyimides (quantum yield. spectrum ) may be varied by creating conditions for the excited sate internal proton transfer , aggregation, and interconversion transitions to triplet states. These processes take place simultaneously, interact and complete. Spectroscopic methods , particularly time resolved, are the major tool to get information about the electronic properties about materials and light induced processes necessary for development of advanced materials. We will investigate novel polyimides with different chemical structures with attached I, Br, and F atoms, which increase the internal conversion rate and influence the internal proton transfer. Ultrafast luminescence and transient absorption techniques :1i0 0 - e information about the rates of competing processes . Their dependences on the chemical structure, material morphology, temperature, a reveal their influence on the luminescence yields and spectra and possibilities to control them.
Most important publications
  1. Vyšniauskas, Aurimas; Cornell, Bethan; Sherin, Peter S.; Maleckaitė, Karolina; Kubánková, Markéta; Izquierdo, Maria Angeles; Vu, Thanh Truc; Volkova, Yulia A.; Budynina, Ekaterina M.; Molteni, Carla; Kuimova, Marina K. Cyclopropyl substituents transform the viscosity-sensitive BODIPY molecular rotor into a temperature sensor. ACS sensors. ISSN 2379-3694. 2021, vol. 6, iss. 6, p. 2158-2167.

  2. Kručaitė, Gintarė; Beresnevičiūtė, Raminta; Tavgenienė, Daiva; Grigalevičius, Saulius; Zhang, Baohua; Gruodis, Alytis; Charniakova, Katsiaryna; Karpič, Renata. Hole-transporting materials based on diarylfluorene compounds containing different substituents: DFT simulation, spectroscopic characterization and applications in organic light emitting diodes. Optical materials. ISSN 0925-3467.  2021, vol. 119, art. no. 111345, p. 1-8.
  3. Kavaliauskaitė, Gabrielė; Kuksėnaitė, Gintarė; Gegevičius, Rokas; Pakštas, Vidas; Selskis, Algirdas; Strazdienė, Viktorija; Padarauskas, Audrius; Orentas, Edvinas; Gulbinas, Vidmantas; Franckevičius, Marius. S-methylthiouronium improves the photostability of methylammonium lead iodide perovskites. ACS applied energy materials. ISSN 2574-0962. 2021, vol. 4, iss. 7, p. 6466-6473.
  4. Golovinas, Edvardas; Rutkauskas, Danielis; Manakova, Elena; Jankunec, Marija; Šilanskas, Arūnas; Sasnauskas, Giedrius; Zaremba, Mindaugas. Prokaryotic Argonaute from Archaeoglobus fulgidus interacts with DNA as a homodimer. Scientific reports. ISSN 2045-2322. 2021, vol. 11, art. no. 4518, p. 1-14
  5. Dovbeshko, Galyna; Gnatyuk, Olena; Dementjev, Andrej; Rutkauskas, Danielis; Kovalska, Evgeniya; Baldycheva, Anna; Ilchenko, Oleksii; Krasnenkov, Dmytro; Kaplas, Tommi. Coherent anti-stokes Raman scattering spectroscopy (CARS) and imaging of DNA on graphene layers and glass covers. FlatChem. ISSN 2452-2627. 2021, vol. 27, art. no. 100243, p. 1-8.
  6. Gegevičius, Rokas; Franckevičius, Marius; Gulbinas, Vidmantas. The role of grain boundaries in charge carrier dynamics in polycrystalline metal halide perovskites. European journal of inorganic chemistry. ISSN 1434-1948.  2021, vol. 2021, no 35, p. 3519-3527.
  7. Páez-Pérez, Miguel; López-Duarte, Ismael; Vyšniauskas, Aurimas; Brooks, Nicholas J.; Kuimova, Marina K. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chemical science. ISSN 2041-6520. 2021, vol. 12, iss. 7, p. 2604-2613.
  8. Karpič, Renata; Ostapenko, Nina; Ostapenko, Yura; Polupan, Yaroslava; Lazarev, Igor; Galunov, Nikolai; Mačernis, Mindaugas; Abramavičius, Darius; Valkūnas, Leonas. Unusual temperature dependence of the fluorescence decay in heterostructured stilbene. Physical chemistry chemical physics. ISSN 1463-9076. 2021, vol. 23, iss. 5, p. 3447-3454.
  9. Gelžinis, Andrius; Augulis, Ramūnas; Büchel, Claudia; Robert, Bruno; Valkūnas, Leonas. Confronting FCP structure with ultrafast spectroscopy data: evidence for structural variations. Physical chemistry chemical physics. ISSN 1463-9076. 2021, vol. 23, iss. 2, p. 806-821.
  10. Žalnėravičius, Rokas; Klimas, Vaclovas; Paškevičius, Algimantas; Grincienė, Giedrė; Karpicz, Renata; Jagminas, Arūnas; Ramanavičius, Arūnas. Highly efficient antimicrobial agents based on sulfur-enriched, hydrophilic molybdenum disulfide nano/microparticles and coatings functionalized with palladium nanoparticles. Journal of colloid and interface science. ISSN 0021-9797. 2021, vol. 591, p. 115-128.
  11. Paek, Sanghyun; Khan, Sher Bahadar; Franckevičius, Marius; Gegevičius, Rokas; Syzgantseva, Olga A.; Syzgantseva, Maria A.; Kinche, Sachin; Asiri, Abdullah M.; Roldán-Carmona, Cristina; Nazeeruddin, Mohammed Khaja. Cation optimization for burn-in loss-free perovskite solar devices. Journal of materials chemistry A. ISSN 2050-7488. 2021, vol. 9, iss. 9, p. 5374-5380.
  12. Fujiwara, Eisuke; Orita, Ryoji; Vyšniauskas, Aurimas; Franckevičius, Marius; Ishige, Ryohei; Gulbinas, Vidmantas; Ando, Shinji. Ultrafast spectroscopic analysis of pressure-induced variations of excited-state energy and intramolecular proton transfer in semi-aliphatic polyimide films. The journal of physical chemistry B. ISSN 1520-6106. 2021, vol. 125, iss. 9, p. 2425-2434.
  13. Kopūstas, Aurimas; Ivanovaitė, Šarūnė; Rakickas, Tomas; Pocevičiūtė, Ernesta; Paksaitė, Justė; Karvelis, Tautvydas; Zaremba, Mindaugas; Manakova, Elena; Tutkus, Marijonas. Oriented soft DNA curtains for single-molecule imaging. Langmuir. ISSN 0743-7463. 2021, vol. 37, iss. 11, p. 3428-3437.
  14. Tutkus, Marijonas; Chmeliov, Jevgenij; Trinkūnas, Gediminas; Akhtar, Parveen; Lambrev, Petar H.; Valkūnas, Leonas. Aggregation-related quenching of LHCII fluorescence in liposomes revealed by single-molecule spectroscopy. Journal of photochemistry and photobiology B: Biology. ISSN 1011-1344. 2021, vol. 218, art. no. 112174, p. 1-7.
  15. Fakharuddin, Azhar; Franckevičius, Marius; Devižis, Andrius; Gelžinis, Andrius; Chmeliov, Jevgenij; Heremans, Paul; Gulbinas, Vidmantas. Double charge transfer dominates in carrier localization in low bandgap sites of heterogeneous lead halide perovskites. Advanced functional materials. ISSN 1616-301X. 2021, vol. 31, iss. 15, art. no. 2010076, p. 1-9.
  16. Jasiūnas, Rokas; Zhang, Huotian; Yuan, Jun; Zhou, Xuehong; Qian, Deping; Zou, Yingping; Devižis, Andrius; Šulskus, Juozas; Gao, Feng; Gulbinas, Vidmantas. From generation to extraction: a time-resolved investigation of photophysical processes in non-fullerene organic solar cells. Journal of physical chemistry C. ISSN 1932-7447. 2020, vol. 124, no. 39, p. 21283-21292.
  17. Golubewa, Lena; Timoshchenko, I.; Romanov, O.; Karpič, Renata; Kulahava, T.; Rutkauskas, Danielis; Shuba, M.; Dementjev, Andrej; Svirko, Yu.; Kuzhir, P. Single‑walled carbon nanotubes as a photo‑thermo‑acoustic cancer theranostic agent: theory and proof of the concept experiment. Scientific reports. ISSN 2045-2322. 2020, vol. 10, art. no. 22174, p. 1-9.
  18. Vagner, Milita; Plaušinaitienė, Valentina; Lukose, Rasuole; Keršulis, Skirmantas; Talaikis, Martynas; Knašienė, Birutė; Stanionytė, Sandra; Kubilius, Virgaudas; Motiejuitis, Karolis; Šaltytė, Zita; Niaura, Gediminas; Naujalis, Evaldas; Žurauskienė, Nerija. PI-MOCVD technology of (La, Sr)(Mn, Co)O3: From epitaxial to nanostructured films. Surface and coatings technology. ISSN 0257-8972. 2020, vol. 385, art. no. 125287, p. 1-8.
  19. Ramanavičius, Simonas; Tereshchenko, Alla; Karpič, Renata; Ratautaitė, Vilma; Samukaitė-Bubnienė, Urtė; Maneikis, Andrius; Jagminas, Arūnas; Ramanavičius, Arūnas. TiO2-x/TiO2-structure based ‘self-heated’ sensor for the determination of some reducing gases. Sensors. ISSN 1424-8220. 2020, vol. 20, iss. 1, art. no. 74, p. 1-17.
  20. Drigo, Nikita; Roldan-Carmona, Cristina; Franckevičius, Marius; Lin, Kun-Han; Gegevičius, Rokas; Kim, Hobeom; Schouwink, Pascal A.; Sutanto, Albertus A.; Olthof, Selina; Sohail, Muhammad; Meerholz, Klaus; Gulbinas, Vidmantas; Corminboeuf, Clémence; Paek, Sanghyun; Nazeeruddin, Mohammad Khaja. Doped but stable: spirobisacridine hole transporting materials for hysteresis-free and stable perovskite solar cells. Journal of the American Chemical Society. ISSN 0002-7863. 2020, vol. 142, iss. 4, p. 1792-1800.
  21. Gelžinis, Andrius; Valkūnas, Leonas. Analytical derivation of equilibrium state for open quantum system. Journal of chemical physics. ISSN 0021-9606. 2020, vol. 152, iss. 5, art. no. 051103, p. 1-6.
  22. Polita, Artūras; Toliautas, Stepas; Žvirblis, Rokas; Vyšniauskas, Aurimas. The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10. Physical chemistry chemical physics. ISSN 1463-9076. 2020, vol. 22, iss. 16, p. 8296-8303.
  23. Van Amerongen, Herbert; Chmeliov, Jevgenij. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. Biochimica et biophysica acta (BBA) - Bioenergetics. ISSN 0005-2728. 2020, vol. 1861, iss. 4, art. no. 148119, p. 1-9.
  24. Streckaite, Simona; Mačernis, Mindaugas; Li, Fei; Kuthanová Trsková, Eliška; Litvin, Radek; Yang, Chunhong; Pascal, Andrew A.; Valkūnas, Leonas; Robert, Bruno; Llansola-Portoles, Manuel J. Modeling dynamic conformations of organic molecules: alkyne carotenoids in solution. The journal of physical chemistry A. ISSN 1089-5639. 2020, vol. 124, iss. 14, p. 2792-2801.
  25. Chernyakova, K.; Ispas, A.; Karpič, Renata; Ecke, G.; Vrublevsky, I.; Bund, A. Formation of ordered anodic alumina nanofibers during aluminum anodizing in oxalic acid at high voltage and electrical power. Surface and coatings technology. ISSN 0257-8972. 2020, vol. 394, art. no. 125813, p. 1-6.
  26. Paddubskaya, Alesia; Rutkauskas, Danielis; Karpič, Renata; Dovbeshko, Galina; Nebogatikova, Nadezhda; Antonova, Irina; Dementjev, Andrej. Recognition of spatial distribution of CNT and graphene in hybrid structure by mapping with coherent anti-Stokes Raman microscopy. Nanoscale research letters. ISSN 1931-7573. 2020, vol. 15, art. no. 37, p. 1-7.
  27. Braver, Jakov; Valkūnas, Leonas; Gelžinis, Andrius. Benchmarking the forward–backward trajectory solution of the quantum-classical Liouville equation. Journal of chemical physics. ISSN 0021-9606 . 2020, vol. 152, iss. 21, art. no. 214116, p. 1-12.
  28. Petrulevičienė, Milda; Juodkazytė, Jurga; Parvin, Maliha; Tereshchenko, Alla; Ramanavičius, Simonas; Karpič, Renata; Samukaitė-Bubnienė, Urtė; Ramanavičius, Arūnas. Tuning the photo-luminescence properties of Wo3 layers by the adjustment of layer formation conditions. Materials. eISSN 1996-1944. 2020, vol. 13, iss. 12, art. no. 2814, p. 1-14.
  29. Samukaitė-Bubnienė, Urtė; Mazetyte-Stasinskiene, Raminta; Chernyakova, Katsiaryna; Karpič, Renata; Ramanavičius, Arūnas. Time-resolved fluorescence spectroscopy based evaluation of stability of glucose oxidase. International journal of biological macromolecules. ISSN 0141-8130. 2020, vol. 163, p. 676-682.
  30. Golubewa, Lena; Kulahava, Tatsiana; Kunitskaya, Yuliya; Bulai, Pavel; Shuba, Mikhail; Karpič, Renata. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Biochemical and biophysical research communications. ISSN 0006-291X. 2020, vol. 529, no. 3, p. 647-651.
  31. Pakštas, Vidas; Grincienė, Giedrė; Kamarauskas, Egidijus; Giraitis, Raimondas; Skapas, Martynas; Selskis, Algirdas; Juškėnas, Remigijus; Niaura, Gediminas; Franckevičius, Marius. Impact of CdS layer thickness on the composition, structure and photovoltaic performance of superstrate CZTSSe solar cells. Solar energy. ISSN 0038-092X. 2020, vol. 207, p. 1231-1239.
  32. Diethelm, Matthias; Schiller, Andreas; Kawecki, Maciej; Devižis, Andrius; Blülle, Balthasar; Jenatsch, Sandra; Knapp, Evelyne; Grossmann, Quirin; Ruhstaller, Beat; Nüesch, Frank; Hany, Roland. The dynamic emission zone in sandwich polymer light‐emitting electrochemical cells. Advanced functional materials. ISSN 1616-301X. 2020, vol. 30, iss. 33, art. no. 1906803, p. 1-10.
  33. Jasiūnas, Rokas; Gegevičius, Rokas; Franckevičius, Marius; Jašinskas, Vidmantas; Gulbinas, Vidmantas. Energy barriers restrict charge carrier motion in MAPI perovskite films. Advanced optical materials. ISSN 2195-1071. 2020, vol. 8, iss. 16, art. no. 2000036, p. 1-8.
  34. Mascoli, Vincenzo; Gelžinis, Andrius; Chmeliov, Jevgenij; Valkūnas, Leonas; Croce, Roberta. Light-harvesting complexes access analogue emissive states in different environments. Chemical science. ISSN 2041-6520. 2020, vol. 11, iss. 22, p. 5697-5709.
  35. Golubewa, Lena; Rehman, Hamza; Kulahava, Tatsiana; Karpič, Renata; Baah, Marian; Kaplas, Tommy; Shah, Ali; Malykhin, Sergei; Obraztsov, Alexander; Rutkauskas, Danielis; Jankunec, Marija; Matulaitienė, Ieva; Selskis, Algirdas; Denisov, Andrei; Svirko, Yuri; Kuzhir, Polina. Macro-, micro- and nano-roughness of carbon-based interface with the living cells:towards a versatile bio-sensing platform. Sensors. ISSN 1424-8220. 2020, vol. 20, iss. 18, art. no. 5028, p. 1-14.
  36. Paek, Sanghyun; Roldán-Carmona, Cristina; Cho, Kyung Taek; Franckevičius, Marius; Kim, Hobeom; Kanda, Hiroyuke; Drigo, Nikita; Lin, Kun-Han; Pei, Mingyuan; Gegevičius, Rokas; Yun, Hyung Joong; Yang, Hoichang; Schouwink, Pascal A.; Corminboeuf, Clémence; Asiri, Abdullah M.; Nazeeruddin, Mohammad Khaja. Molecular design and operational stability: toward stable 3D/2D perovskite interlayers. Advanced science. eISSN 2198-3844. 2020, vol. 7, iss. 19, art. no. 2001014, p. 1-11.
  37. Dementjev, Andrej; Rutkauskas, Danielis; Polovy, Ivan; Mačernis, Mindaugas; Abramavičius, Darius; Valkūnas, Leonas; Dovbeshko, Galina. Characterization of thymine microcrystals by CARS and SHG microscopy. Scientific reports. eISSN 2045-2322. 2020, vol. 10, art. no. 17097, p. 1-9.
  38. Jasiūnas, Rokas; Gegevičius, Rokas; Franckevičius, Marius; Phung, Nga; Abate, Antonio; Gulbinas, Vidmantas. Suppression of electron trapping in MAPbI3 Perovskite by Sr2+ doping. Physica Status Solidi - Rapid Research Letter. ISSN 1862-6254. 2020, vol. 14, issue 11, art. no. 2000307, p. 1-5.
  39. Golubewa, Lena; Karpič, Renata; Matulaitienė, Ieva; Selskis, Algirdas; Rutkauskas, Danielis; Pushkarchuk, Aliaksandr; Khlopina, Tatsiana; Michels, Dominik; Lyakhov, Dmitry; Kulahava, Tatsiana; Shah, Ali; Svirko, Yuri; Kuzhir, Polina. Surface-enhanced Raman spectroscopy of organic molecules and living cells with gold-plated black silicon. ACS applied materials & interfaces. ISSN 1944-8244. 2020, vol. 12, iss. 45, p. 50971-50984.
  40. Vengelis, Julius; Jarutis, Vygandas; Franckevičius, Marius; Gulbinas, Vidmantas; Sirutkaitis, Valdas. Investigation of supercontinuum generated in the cladding of highly nonlinear photonic crystal fiber. Journal of the Optical Society of America B. ISSN 0740-3224. 2019, vol. 36, iss. 2, p. A79-A85.
  41. Pushkarev, Anatoly P.; Korolev, Viacheslav I.; Markina, Daria I.; Komissarenko, Filipp E.; Naujokaitis, Arnas; Drabavičius, Audrius; Pakštas, Vidas; Franckevičius, Marius; Khubezhov, Soslan A.; Sannikov, Denis A.; Zasedatelev, Anton V.; Lagoudakis, Pavlos G.; Zakhidov, Anvar A.; Makarov, Sergey V. A few-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions. ACS Applied materials & interfaces.ISSN 1944-8244. 2019, vol. 11, iss. 1, p. 1040-1048.
  42. Gelžinis, Andrius; Augulis, Ramūnas; Butkus, Vytautas; Robert, Bruno; Valkūnas, Leonas. Two-dimensional spectroscopy for non-specialists. Biochimica et biophysica acta (BBA) - Bioenergetics. ISSN 0005-2728. 2019, vol. 1860, iss. 4, p. 271-285.
  43. Gegevičius, Rokas; Franckevičius, Marius; Chmeliov, Jevgenij; Tress, Wolfgang; Gulbinas, Vidmantas. Electroluminescence dynamics in perovskite solar cells reveals giant overshoot effect. Journal of physical chemistry letters. ISSN 1948-7185. 2019, vol. 10, iss. 8, p. 1779-1783.
  44. Franckevičius, Marius; Pakštas, Vidas; Grincienė, Giedrė; Kamarauskas, Egidijus; Giraitis, Raimondas; Nekrasovas, Jonas; Selskis, Algirdas; Juškėnas, Remigijus; Niaura, Gediminas. Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach. Solar energy. ISSN 0038-092X. 2019, vol. 185, p. 283-289.
  45. Tutkus, Marijonas; Rakickas, Tomas; Kopūstas, Aurimas; Ivanovaitė, Šarūnė; Venckus, Oskaras; Navikas, Vytautas; Zaremba, Mindaugas; Manakova, Elena; Valiokas, Ramūnas. Fixed DNA molecule arrays for high-throughput single DNA-protein interaction studies. Langmuir. ISSN 0743-7463. 2019, vol. 35, iss. 17, p. 5921-5930.
  46. Tutkus, Marijonas; Saccon, Francesco; Chmeliov, Jevgenij; Venckus, Oskaras; Čiplys, Ignas; Ruban, Alexander V.; Valkūnas, Leonas. Single-molecule microscopy studies of LHCII enriched in Vio or Zea. Biochimica et biophysica acta (BBA) - Bioenergetics. ISSN 0005-2728. 2019, vol. 1860, iss. 6, p. 499-507.
  47. Dementjev, Andrej; Gnatiuk, Olena; Rutkauskas, Danielis; Karpič, Renata; Tutkus, Marijonas; Dovbeshko, Galina. Investigation by CARS microscopy of squalene and boron nitride as a precursor material for drug delivery carrier. Journal of photochemistry and photobiology A: Chemistry. ISSN 1010-6030. 2019, vol. 380, art. no. 111863, p. 1-5.
  48. Xia, Rui; Fei, Zhaofu; Drigo, Nikita; Bobbink, Felix D.; Huang, Zhangjun; Jasiūnas, Rokas; Franckevičius, Marius; Gulbinas, Vidmantas; Mensi, Mounir; Fang, Xiaodong; Roldán-Carmona, Cristina; Nazeeruddin, Mohammad Khaja; Dyson, Paul J. Retarding thermal degradation in hybrid perovskites by ionic liquid additives. Advanced functional materials. ISSN 1616-301X. 2019, vol. 29, iss. 22, art. no. 1902021, p. 1-9.
  49. Toliautas, Stepas; Dodonova, Jelena; Žvirblis, Audrius; Čiplys, Ignas; Polita, Artūras; Devižis, Andrius; Tumkevičius, Sigitas; Šulskus, Juozas; Vyšniauskas, Aurimas. Enhancing the viscosity-sensitive range of a BODIPY molecular rotor by two orders of magnitude. Chemistry - A European journal. ISSN 0947-6539. 2019, vol. 25, iss. 44, p. 10342-10349.
  50. Al-Ashouri, Amran; Magomedov, Artiom; Roß, Marcel; Jošt, Marko; Talaikis, Martynas; Chistiakova, Ganna; Bertram, Tobias; Márquez, José A.; Köhnen, Eike; Kasparavičius, Ernestas; Levcenco, Sergiu; Gil-Escrig, Lidón; Hages, Charles J.; Schlatmann, Rutger; Rech, Bernd; Malinauskas, Tadas; Unold, Thomas; Kaufmann, Christian A.; Korte, Lars; Niaura, Gediminas; Getautis, Vytautas; Albrecht, Steve. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & environmental science. ISSN 1754-5692. 2019, vol. 12, iss. 11, p. 3356-3369.
  51. Fakharuddin, Azhar; Qiu, Weiming; Croes, Guillaume; Devižis, Andrius; Gegevičius, Rokas; Vakhnin, Alexander; Rolin, Cedric; Genoe, Jan; Gehlhaar, Robert; Kadashchuk, Andrey; Gulbinas, Vidmantas; Heremans, Paul. Reduced efficiency roll‐off and improved stability of mixed 2D/3D perovskite lighte emitting diodes by balancing charge injection. Advanced functional materials. ISSN 1616-301X. 2019, vol. 29, iss. 37, art. no. 1904101, p. 1-12.
  52. Chmeliov, Jevgenij; Gelžinis, Andrius; Franckevičius, Marius; Tutkus, Marijonas; Saccon, Francesco; Ruban, Alexander V.; Valkūnas, Leonas. Aggregation-related nonphotochemical quenching in the photosynthetic membrane. Journal of physical chemistry letters. ISSN 1948-7185. 2019, vol. 10, p. 7340-7346.
  53. Orita Ryoji, Franckevičius Marius, Vyšniauskas Aurimas, Gulbinas Vidmantas, Sugiyama Haruki, Uekusa Hidehiro,Kanosue Kenta, Ishigea Ryohei, Ando Shinji. Enhanced fluorescence of phthalimide compounds induced by the incorporation of electron-donating alicyclic amino groups. Physical chemistry chemical physics. ISSN 1463-9076. 2018, vol. 20, iss. 23, p. 16033-16044.
  54. Gegevičius Rokas, Treideris Marius, Pakštas Vidas, Franckevičius Marius, Gulbinas Vidmantas. Oxide layer enhances photocurrent gain of the planar MAPbI3 photodetector. Advanced electronic materials. ISSN 2199-160X. 2018, vol.4, iss. 7, art. no. 1800114, p. 1-7.
  55. Abramavičius Darius, Chorošajev Vladimir, Valkūnas Leonas. Tracing feed-back driven exciton dynamics in molecular aggregates. Physical chemistry chemical physics. ISSN 1463-9076. 2018, Vol. 20, iss. 33, p. 21225-21240.
  56. Chernyakova Katsiaryna, Karpič Renata, Rutkauskas Danielis, Vrublevsky Igor, Hassel Achim Walter. Structural and fluorescence studies of polycrystalline α‐Al2O3 obtained from sulfuric acid anodic alumina. Physica status solidi A. Applications and materials science. ISSN 1862-6300. 2018, vol. 215, iss. 16, art. no. 1700892, p. 1-6.
  57. Jašinskas Vidmantas, Oberndorfer Florian, Pakštas Vidas, Hertel Tobias, Gulbinas Vidmantas. Direct tracking of ultrafast carrier motion dynamics in semiconducting single-wall carbon nanotubes. Journal of physical chemistry C. ISSN 1932-7447. 2018, vol. 122, iss. 28, p. 16424-16430.
  58. Karuthedath Safakath, Melianas Armantas, Kan Zhipeng, Pranculis Vytenis, Wohlfahrt Markus, Khan Jafar I., Gorenflot Julien, Xia Yuxin, Inganäs Olle, Gulbinas Vidmantas, Kemerink Martijn, Laquai Frédéric. Thermal annealing reduces geminate recombination in TQ1:N2200 all-polymer solar cells. Journal of materials chemistry A. ISSN 2050-7488. 2018, vol. 6, iss. 17, p. 7428-7438.
  59. Tiguntseva Ekaterina Y., Baranov Denis G., Pushkarev Anatoly P., Munkhbat Battulga, Komissarenko Filipp, Franckevičius Marius, Zakhidov Anvar A., Shegai Timur, Kivshar Yuri S., Makarov Sergey V. Tunable hybrid fano resonances in halide perovskite nanoparticles. Nano letters. ISSN 1530-6984. 2018, vol. 18, no. 9, p. 5522-5529.
  60. Venckus Petras, Paliulis Skalvis, Kostkevičienė Jolanta, Dementjev Andrej. CARS microscopy of scytonemin in cyanobacteria Nostoc commune. Journal of Raman spectroscopy. ISSN 0377-0486. 2018, vol. 49, iss. 8, p. 1333-1338.
  61. Vyšniauskas Aurimas, Kuimova Marina K. A twisted tale: measuring viscosity and temperature of microenvironments using molecular rotors. International reviews in physical chemistry. ISSN 0144-235X. 2018, vol. 37, iss. 2, p. 259-285.
  62. Tutkus Marijonas, Akhtar Parveen, Chmeliov Jevgenij, Görföl Fanni, Trinkūnas Gediminas, Lambrev Petar H., Valkūnas Leonas. Fluorescence microscopy of single liposomes with incorporated pigment–proteins. Langmuir. ISSN 0743-7463. 2018, vol. 34, iss. 47, p. 14410-14418.
  63. Jasiūnas Rokas, Melianas Armantas, Xia Yuxin, Felekidis Nikolaos, Gulbinas Vidmantas, Kemerink Martijn. Dead ends limit charge carrier extraction from all‐polymer bulk heterojunction solar cells. Advanced electronic materials. ISSN 2199-160X. 2018, vol. 4, iss. 8, art. no. 1800144, p. 1-7.
  64. Devižis Andrius, Jenatsch Sandra, Diethelm Matthias, Gulbinas Vidmantas, Nüesch Frank, Hany Roland. Dynamics of charge distribution in sandwich-type light-emitting electrochemical cells probed by the stark effect. ACS Photonics. ISSN 2330-4022. 2018, vol. 5, p. 3124-3131.
  65. Edvardas Rybakovas, Andrius Gelžinis, Leonas Valkūnas. Simulations of absorption and fluorescence lineshapes using the reaction coordinate method. Chemical physics. ISSN 0301-0104. 2018, vol. 515, p. 242-251.
  66. Dyakov Yuri A., Toliautas Stepas, Trakhtenberg Leonid I., Valkūnas Leonas. Excited state photodissociation dynamics of 2-, 3-, 4-hydroxyacetophenone: Theoretical study. Chemical physics. ISSN 0301-0104. 2018, vol. 515, p. 672-678.
  67. Bukauskytė Austėja, Karpič Renata, Striela Romualdas, Labanauskas Linas, Gruodis Alytis, Peckus Domantas, Augulis Ramūnas, Gulbinas Vidmantas. The influence of substituents of perylenediimides on their spectroscopic properties. Journal of luminescence. ISSN 0022-2313. eISSN 1872-7883. 2018, Vol. 195, p. 252-258.
  68. Paddubskaya Alesia, Dementjev Andrej, Devižis Andrius, Karpič Renata, Maksimenko Sergey, Valušis Gintaras. Coherent anti-Stokes Raman scattering as an effective tool for visualization of single-wall carbon nanotubes. Optics express. 2018, vol. 26, iss. 8, p. 10527-10534. ISSN 1094-4087.
  69. Peckus Domantas, Matulaitis Tomas, Franckevičius Marius, Mimaitė Viktorija, Tamulevičius Tomas, Simokaitienė Jūratė, Volyniuk Dmytro, Gulbinas Vidmantas, Tamulevičius Sigitas, Gražulevičius Juozas Vidas. Twisted intramolecular charge transfer states in trinary star-shaped triphenylamine-based compounds. Journal of Physical Chemistry A. ISSN 1089-5639. eISSN 1520-5215. 2018, vol. 122, iss. 12, p. 3218-3226.
  70. Rokas Gegevičius, Marius Franckevičius, Vidas Pakštas, Ramūnas Augulis, Vidmantas Gulbinas. High-speed, sensitive planar perovskite photodetector based on interdigitated Pt and Au electrodes. Physica status solidi A. Applications and materials science. ISSN 1862-6300. 2018, vol. 215, iss. 7, 1700822, p. 1-6.
  71. Daškevičiūtė Šarūnė, Sakai Nobuya, Franckevičius Marius, Daškevičienė Marytė, Magomedov Artiom, Jankauskas Vygintas, Snaith Henry J., Getautis Vytautas. Nonspiro, fluorene-based, amorphous hole transporting materials for efficient and stable perovskite solar cells. Advanced science. ISSN 2198-3844. 2018, vol. 5, iss. 4, 1700811, p. 1-7.
  72. Auffray Etiennette, Augulis Ramūnas, Fedorov Andrei, Dosovitskiy Georgy, Grigorjeva Larisa, Gulbinas Vidmantas, Koschan Merry, Lucchini Marco, Melcher Charles, Nargelas Saulius, Tamulaitis Gintautas, Vaitkevičius Augustas, Zolotarjovs Aleksejs, Korzhik Mikhail. Excitation transfer engineering in Ce‐doped oxide crystalline scintillators by codoping with alkali-earth ions. Physica status solidi A. Applications and materials science. ISSN 1862-6300. 2018, vol. 215, iss. 7, 1700798, p. 1-6.
  73. Farooq Shazia, Chmeliov Jevgenij, Wientjes Emilie, Koehorst Rob, Bader Arjen, Valkūnas Leonas, Trinkūnas Gediminas, van Amerongen Herbert. Dynamic feedback of the photosystem II reaction centre on photoprotection in plants. Nature plants. ISSN 2055-026X. 2018, vol. 4, p. 225-231.
  74. Llansola-Portoles M. J., Redeckas Kipras, Streckaite S., Ilioaia C., Pascal A. A., Telfer A., Vengris Mikas, Valkūnas Leonas, Robert B. Lycopene crystalloids exhibit singlet exciton fission in tomatoes. Physical chemistry chemical physics. ISSN 1463-9076. 2018, Vol. 20, iss.13, p. 8640-8646.
  75. Gelžinis Andrius, Chmeliov Jevgenij, Alexander V. Ruban, Valkūnas Leonas. Can red-emitting state be responsible for fluorescence quenching in LHCII aggregates? Photosynthesis research. ISSN 0166-8595. 2018, vol. 135, iss. 1-3, p. 275-284.
  76. Bubnienė Urtė, Mazėtytė Raminta, Ramanavičienė Almira, Gulbinas Vidmantas, Ramanavičius Arūnas, Karpič Renata. Fluorescence quenching-based evaluation of glucose oxidase composite with conducting polymer, polypyrrole. Journal of physical chemistry. C. ISSN 1932-7447. 2018, vol. 122, iss. 17, p. 9491-9498.
  77. Streckaitė Simona, Franckevičius Marius, Peckus Domantas, Redeckas Kipras, Vengris Mikas, Gulbinas Vidmantas. Enhanced nonlinear optical response of resonantly coupled silver nanoparticle–organic dye complexes. Plasmonics. ISSN 1557-1955. 2018, vol. 13, iss. 3, p. 749-755.